Name of the Faculty	:	Smt. Anita Kumari
Discipline	:	Electronics and Communication Engg.
Semester	:	IIIrd
Subject	:	DIGITAL ELECTRONICS
Lesson Plan Duration	:	Aug 24
	• •	

Work Load (Lecture/ Practical) per week (in hours): 03 HOURS (Lecture)

Week	Theory		Practical
	Lecture	Topic (including assignment/ test)	Торіс
	day		T , 1 , 1 ,
	1	Introduction about subject.	Introduction about instruments to be
1 st	2	Distinction between analog and digital signal. Applications and advantages of digital signals.	used in practical work.
	3	Binary, octal and hexadecimal number system.	
	4	Conversion from decimal and hexadecimal to binary and vice-versa.	Verification and interpretation of
Ind	5	Binary addition and subtraction including binary points. 1's and 2's complement method of addition/subtraction.	truth tables for AND, OR, NOT NAND, NOR and
2	6	Concept of code, weighted and non-weighted codes, examples of 8421, BCD, excess-3 and Gray code.	Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates
	7	Concept of parity, single and double parity and error detection	Realisation of logic functions
3 rd	8	Concept of negative and positive logic	with the help of NAND or NOR
	9	Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR, EXOR Gates	gates
	10	NAND and NOR as universal gates.	To design a half adder and
	11	Introduction to TTL and CMOS logic families	full adder
4 th	12	Postulates of Boolean algebra, De Morgan's Theorems.	and NAND gates and verification of its operation.
	13	Implementation of Boolean (logic) equation with gates	To design a half adder and full
5 th	14	Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits	adder using XOR and NAND gates

			and verification of
	15	Half adder and Full adder circuit, design and implementation.	ns operation.
	16	4 bit adder circuit	Verification of truth table for
	17	Four bit decoder circuits for 7 segment display and decoder/driver ICs.	positive edge triggered, negative
6 th	18	Basic functions and block diagram of MUX and DEMUX with different ICs	edge triggered, level triggered IC flip-flops (At least one IC each of D latch , D flip-flop, JK flip-flops).
	19	Basic functions and block diagram of Encoder	Verification of truth table for
7 th	20	Concept and types of latch with their working and applications	decoder ICs.
	21	Operation using waveforms and truth tables of RS, T, D F/F.	
	22	Master/Slave JK flip flops. Race around condition.	Verification of truth table for Mux
8 th	23	Difference between a latch and a flip flop	and DeMux
	24	Introduction to Asynchronous counters.	
	25	Introduction to synchronous counters.	To design a 4 bit SISO, SIPO,
Qth	26	Binary counters	PISO, PIPO shift
,	27	Divide by N ripple counters	JK/D flip flops and verification of their operation.
	28	Decade counter, Ring counter	To design a 4 bit ring counter and
10 th	29	Introduction and basic concepts including shift left and shift right.	verify its operation.
	30	Serial in parallel out, serial in serial out shift register.	
	31	Parallel in serial out, parallel in parallel out shift register.	Use of Asynchronous
11 th	32	Universal shift register	Counter ICs (7490 or 7493)
	33	Working principle of A/D converters	01 /+23)
12 th	34	Brief idea about different techniques of A/D conversion and	To design and

		study of : Stair step Ramp A/D converter	verify ADC
	35	Dual Slope A/D converter	
	36	Successive Approximation A/D Converter	
	37	Working principle of D/A converters	To design and verify DAC
13 th	38	Binary Weighted D/A converter	
	39	R/2R ladder D/A converter	
	40	Applications of A/D and D/A converter.	To design and verify ALU 74181
14 th	41	Memory organization, classification of semiconductor memories	
	42	RAM, ROM, PROM, EPROM, EEPROM, static and dynamic RAM	-
	43	introduction to 74181 ALU IC	Internal Viva of all
15 th	44	Revision	Practical.
	45	Revision	